Q.P. Code: 18CS0509

R18

Max. Marks: 60

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations July-2021 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & CSIT)

Time: 3 hours

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)

a Define Melay machine and Moore machine.
b List out the identities rules of Regular expression.
c Write what is Left recursion and Left factoring.
d What is Instantaneous description (ID) in PDA?
e Describe Turing reducibility.
2M
2M
2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

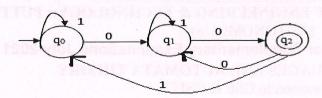
UNIT-I

a Write the Procedure for Minimization of FA (Equivalent Method)?
b Minimize the following DFA

Present states	i/p=0	i/p=1
q0	q1	q2
q1	q2	q3
q2	q2	q4
* q3	q3	q3
*q4	q4	q4
q5	q5	q4
		Calcium con

^{**}Here q0 is initial state and q3 and q4 are final states

OR


Write down procedure for Myhill- Nerode theorem with a given example ('*' means final states)

Present State	Next State	
	I/P=a	I/P=b
→A	В	F
В	Α	F
C	G	A
D	Н	В
Е	A	G
*F	Н	С
*G	A	D
*H	A	С

UNIT-II

Explain about Arden's theorem, Construct RE from given Finite Automata

10M

OR

5 a Construct FA from RG **4M**

S->aA/bB/a/b

A->aS/bB/b

 $S \rightarrow 1B/0A$

 $B \rightarrow aA/bS$

6

b Construct an equivalent FA for given regular expression (0+1)*(00+11)(0+1)*

6M

UNIT-III

Convert the following grammar into Greibach normal form

10M

 $S \rightarrow AA/a$ A→SS/b

OR

a Define derivation tree? Construct Derivation tree, Leftmost and Rightmost 7M7 derivation and Right most derivation for the string 11001010

 $B \rightarrow 0/0S/1BB$

 $A \rightarrow 1/1S/0AA$

3M

UNIT-IV

b Construct CFG for the language consisting of palindromes of the string

8 Convert the following PDA into an equivalent CFG 10M

 $\delta (q_0,a_0,z_0) \rightarrow (q_1,z_1z_0)$

 $\delta(q_0,b,z_0) \rightarrow (q_1,z_2z_0)$

 $\delta(q_1,a,z_1) \rightarrow (q_1,z_1z_1)$

 $\delta(q_1,b,z_1) \rightarrow (q_1,\lambda)$

 $\delta(q_1,b,z_2) \rightarrow (q_1,z_2z_2)$

 $\delta(q_1,a,z_2) \rightarrow (q_1,\lambda)$

 $\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) // \text{ accepted by the empty stack}$

OR

9 Construct PDA for the following Grammar. 10M

 $S \rightarrow aB$

 $B \rightarrow bA/b$

 $A \rightarrow aB$

UNIT-V

10 Define PCP. Verify whether the following lists have a PCP solution 10M

 $_{ababaaa}^{abab}$, $\binom{aaabbb}{bb}$, $\binom{aab}{baab}$, $\binom{ba}{baa}$, $\binom{ab}{ba}$, $\binom{aa}{a}$.

11 Explain the various types of Turing machine with suitable examples 10M

END